
Fig. 4.6 Coin toss example (solidity)

Oracles are agents on the blockchain that can verify events from the real world
and then provide the corresponding information as data to the smart contracts
(Fig. 4.7). Running on the blockchain, Oracles act as intermediaries between
external data and smart contracts that also run on the blockchain [9]. Smart contracts
usually specify only sequences like “If condition C has occurred, operation
O will be executed.” To check whether the condition has been met, smart contracts
often rely on external data. One example is sensors that measure real-world phenomena.
For example, if you want to implement insurance through a smart contract

Oracle anatomy

Smart Contract

4.4.1 Introduction
The network participants (nodes) validate and execute operations performed on the
blockchain, such as smart contracts, but it is not uncommon for a smart contract to
require data from external third parties. Given that blockchains cannot access data
outside their networks, how is external data incorporated into the workflow? Here is
where Oracles come in.

116_007 Eth-Oracle-ERC20-5.1

 116_007 Eth-Oracle-ERC20-5.1 Page 1

For example, if you want to implement insurance through a smart contract
that pays direct compensation when certain temperatures are reached, an Oracle
must provide the temperature information.

4.4.2 Smart Contract Integration

The addition of an Oracle occurs through multi-signature (MultiSig) contracts, which require that an
invocation of a smart contract method be signed by multiple parties.
To improve trust in the external data a smart contract that an Oracle provides and to prevent the
Oracle from being compromised by one party, data can be signed by multiple parties: In the case of a
stock price Oracle, one can set up MultiSig so each stock price data item must be signed by three
independent parties (e.g., Bloomberg, NASDAQ, and MSNBC).

4.4.3 Oracles and Security

The basic principle of blockchain is that a consensus is reached through the involvement of multiple
parties, eliminating the need to trust a single party.
However, if the data is provided by a central authority like a bank, the data-providing authority must
be trusted.

4.4.4 Types of Oracles
Data sources for smart contract Oracles can be classified into five types:
• Software Oracle: Data is available online and is, ideally, provided from multiple
independent sources, has a public record history (e.g., air traffic information,
meteorological data), and is signed by multiple parties.
• Hardware Oracle: Data is from real-world measurements like RFID sensors in
a supply chain site. Challenges with this type of data source include that there is
usually only one source, there is no public record history, it is signed by only one
party, and transmitting the information in a secure and provably immutable way
is difficult.
From a technical perspective, Oracles can also be classified by their functional
setup—that is, based on data flow (inbound vs. outbound) and whether they are
consensus-based or not. This delineation is not mutually exclusive, so some data
can be both inbound and outbound.
• Inbound Oracles: These Oracles provide a smart contract with information
from the outside world. For example, a buy order is set to be executed as soon as
the EUR-USD exchange rate falls below a certain limit.
• Outbound Oracles: These Oracles enable smart contracts to send data to the
outside instead of just receiving it. For example, access to an area may be
granted when a payment has been made on the blockchain (e.g., via a smart lock).
• Consensus-based Oracles: Several Oracles are combined so one does not have
to rely on a single external source. These Oracles then form a consensus to make
decisions. An example is a consensus Oracle that specifies that three out of five
Oracles must agree before an operation is executed. Of course, it is also possible
to apply scores to individual Oracles such that a source carries more weight if it
appears to be more reliable than other sources.

4.4.5 Oracle Contract Example
The Oracle contract provides a simple working example of an Oracle smart contract

 116_007 Eth-Oracle-ERC20-5.1 Page 2

The Oracle contract provides a simple working example of an Oracle smart contract
written in the Solidity programming language (Fig. 4.8). In this example, the Oracle
can provide the USD-EUR foreign exchange (FX) rate to other smart contacts on a
blockchain: The contact specifies the owner (i.e., a single-signature Oracle), the
timestamp input (to determine when the FX rate can be returned), and the FX rate
itself, which other smart contacts can access.

ERC-20
ERC-20 is the most popular Ethereum blockchain technical standard for
tokens that are issued on Ethereum. It was proposed by Fabian Vogelsteller
on November 19, 2015. ERC stands for Ethereum Request for Comment,
and 20 is a unique ID number for the request to differentiate it from other
standards. Currently, there are more than 65,000 ERC-20 tokens in
existence, although many of these tokens have no market value.
The ERC-20 token defines the following common list of rules in the smart contract:

contract ERC20Interface {
function totalSupply() public view returns (uint);
function balanceOf(address tokenOwner) public view returns (uint balance);
function allowance(address tokenOwner, address spender) public view returns (uint remaining);
function transfer(address to, uint tokens) public returns (bool success);
function approve(address spender, uint tokens) public returns (bool success);
function transferFrom(address from, address to, uint tokens) public returns (bool success);
event Transfer(address indexed from, address indexed to, uint tokens);
event Approval(address indexed tokenOwner, address indexed spender, uint tokens);
}

 116_007 Eth-Oracle-ERC20-5.1 Page 3

}

The relevant functions are listed as follows:
totalSupply(): Returns the total token supply.
balanceOf(): Gets the balance of the account for the given address.
allowance(): Returns the allowance amount from _owner.
transfer(): Transfers the balance from the owner's account to another account and must fire the transfer event.
transferFrom(): Sends the amount of tokens from address from to address to.
//The transferFrom() method is used to withdraw the workflow, allowing contracts to transfer tokens on your
behalf.
approve(): Allows the spender to withdraw from your account with a certain amount.

Before the ERC token standard, the numerous initial coin offerings (ICOs) start-ups or Dapps had created their own
tokens with many different standards.
After the release of the ERC-20 standard, things changed and have become much more streamlined.

The benefits of ERC-20 tokens include the following:
1.Reduces the risk of contract breaking
2.Reduces the complexity of token interactions
3.Uniform and quicker transactions
3.Confirms transactions more efficiently
4.Enhances token liquidity

However, ERC-20 tokens do not have regulatory built-in limitations by
design, so there are no restrictions for transferring them. This kind of token
is known as a utility token. When dealing with security regulations, token
holders must apply for know your customer (KYC); anti-money laundering (AML) verification processes;
token trading is subject to federal security regulations and many additional constraints apply to these regulations.

Since the ERC-20 token is widely adopted in the industry, currently most of
the security token ERC standard proposals are ERC-20-compatible, which
means that potentially all wallets and exchanges supporting ERC-20 will
support these tokens as well.
In ERC-20 standards, when a user trades these tokens, all of the token
supply can be treated as the same value; it is interchangeable. The ERC-20
token is a fungible token (FT). An FT is a core characteristic of cryptocurrencies.
It can be easily replaced by something identical and it is interchangeable with ease, like bitcoin.

On the other hand, a non-fungible token (NFT) is a special type of
cryptographic token that has unique information or attributes. NFTs are thus
irreplaceable or not interchangeable. For this purpose, the ERC-721 token
was created as a standard.
Dieter Shirley, the creator of CryptoKitties, developed the term NFT.
Each token within the contract represents a different value.

Security token technical design overview.
Security tokens, like ERC-20 tokens with built-in regulatory restrictions,
protect investors' rights at the token level. It redefines the whole process

 116_007 Eth-Oracle-ERC20-5.1 Page 4

protect investors' rights at the token level. It redefines the whole process
through which companies or startups raise money.
As of today, many different standards are being proposed and implemented
in the marketplace. In this section, we'll look into the following Ethereum
security token standards:
ERC-1400/ERC-1410
ST-20
R-Token
SRC-20
DS-Token
ERC-1404
ERC-884

Till this place

 116_007 Eth-Oracle-ERC20-5.1 Page 5

